征求意見:“變革性技術(shù)關(guān)鍵科學(xué)問題”重點專項2020年度第二批項目申報指南征求意見了
發(fā)布時間:2020-05-12 來源:中國無機鹽工業(yè)協(xié)會 分享到:
關(guān)于對國家重點研發(fā)計劃“變革性技術(shù)關(guān)鍵科學(xué)問題”重點專項2020年度第二批項目申報指南征求意見的通知
科學(xué)技術(shù)部根據(jù)《國務(wù)院關(guān)于改進加強中央財政科研項目和資金管理的若干意見》(國發(fā)〔2014〕11號)、《國務(wù)院關(guān)于深化中央財政科技計劃(專項、基金等)管理改革方案的通知》(國發(fā)〔2014〕64號)、《國家重點研發(fā)計劃管理暫行辦法》(國科發(fā)資〔2017〕152號)等文件要求,現(xiàn)將“變革性技術(shù)關(guān)鍵科學(xué)問題”重點專項2020年度第二批項目申報指南公開征求意見。征求意見時間為2020年5月11日至2020年5月25日。國家重點研發(fā)計劃相關(guān)重點專項的凝練布局和任務(wù)部署已經(jīng)戰(zhàn)略咨詢與綜合評審特邀委員會咨詢評議,國家科技計劃管理部際聯(lián)席會議研究審議,并報國務(wù)院批準實施。本次征求意見重點針對各專項指南方向提出的目標指標和相關(guān)內(nèi)容的合理性、科學(xué)性、先進性等方面聽取各方意見??萍疾繉嘘P(guān)部門、專業(yè)機構(gòu)和專家,根據(jù)征求意見情況,修改完善項目申報指南。征集到的意見將不再反饋和回復(fù)。相關(guān)意見建議請于5月25日24點之前發(fā)至電子郵箱:jcs_zdxmc@most.cn。附件:“變革性技術(shù)關(guān)鍵科學(xué)問題”重點專項2020年度第二批項目申報指南(征求意見稿)科技部基礎(chǔ)研究司“變革性技術(shù)關(guān)鍵科學(xué)問題”重點專項2020年度第二批項目申報指南(征求意見稿)“變革性技術(shù)關(guān)鍵科學(xué)問題”專項2020年第二批項目申報指南擬圍繞應(yīng)用數(shù)學(xué)領(lǐng)域,支持15個項目,國撥經(jīng)費總概算1.3億元。申報單位根據(jù)指南支持方向,面向解決重大科學(xué)問題和突破關(guān)鍵技術(shù)進行一體化設(shè)計。項目應(yīng)整體申報,須覆蓋相應(yīng)指南方向的全部考核指標。每個項目下設(shè)課題不超過4個,每個項目參與單位數(shù)不超過6家。1.三維地震成像的數(shù)學(xué)方法與超分辨反演高效算法研究內(nèi)容:針對我國非常規(guī)油氣勘探關(guān)鍵需求,提出適用于我國黃土層厚、儲層縱向薄互層、橫向強非均質(zhì)等特定地質(zhì)結(jié)構(gòu)的地震波傳播數(shù)學(xué)物理模型,研究其適定性理論、高效正演算法、反問題求解及與機器學(xué)習(xí)結(jié)合的新型高效超分辨反演方法。提出模型-數(shù)據(jù)雙驅(qū)動的三維地震成像數(shù)學(xué)方法。提出致密油氣儲層巖性、物性參數(shù)的人工智能超分辨反演方法。開發(fā)關(guān)鍵軟件模塊,支撐非常規(guī)油氣的勘探與開發(fā)。考核指標:建立適應(yīng)中國特定地質(zhì)結(jié)構(gòu)的非常規(guī)油氣地震波方程,形成1套完備的數(shù)學(xué)理論和高效算法。建立新數(shù)學(xué)物理模型的適定性理論與精度可控高效正演算法;提出模型驅(qū)動和數(shù)據(jù)驅(qū)動相結(jié)合的三維地震成像數(shù)學(xué)方法;提出致密油氣/頁巖油氣儲層巖性、物性參數(shù)的人工智能超分辨反演方法。建立的數(shù)學(xué)物理模型與實際情況符合率在80%以上,新模型數(shù)值求解的效率提升40%以上;研制的人工智能超分辨反演方法的分辨能力(在鄂爾多斯盆地目標區(qū))應(yīng)達到1/10波長以下;處理解釋二維地震不少于30000公里,處理三維地震不少于2000平方公里,并驗證方法的有效性。2.油氣管網(wǎng)安全運維的大數(shù)據(jù)分析與算法研究內(nèi)容:基于大數(shù)據(jù)與管網(wǎng)運維機理的耦合計算發(fā)展魯棒可解釋的油氣管網(wǎng)安全運維數(shù)學(xué)模型。結(jié)合統(tǒng)計學(xué)習(xí)、深度學(xué)習(xí)和強化學(xué)習(xí)發(fā)展油氣管網(wǎng)安全預(yù)警高效算法,進行缺陷和失效統(tǒng)計分析,狀態(tài)數(shù)據(jù)分析,多元數(shù)據(jù)耦合與挖掘,實現(xiàn)多種預(yù)警數(shù)據(jù)整合和挖掘利用。針對管網(wǎng)運維的多元復(fù)雜供需關(guān)系,研究降本增效型油氣戰(zhàn)略儲備布局,實現(xiàn)應(yīng)急狀態(tài)下油氣安全穩(wěn)定快速響應(yīng),建立油氣實時資源調(diào)度的大數(shù)據(jù)驅(qū)動的數(shù)學(xué)優(yōu)化模型,結(jié)合機器學(xué)習(xí)發(fā)展混合整數(shù)規(guī)劃問題的高效算法。考核指標:建立管道安全全過程監(jiān)控與診斷的數(shù)據(jù)采集與管理系統(tǒng),實現(xiàn)管道工藝參數(shù)的實時監(jiān)控。針對監(jiān)測及故障診斷、陰極保護的監(jiān)測、閥室與地表設(shè)施監(jiān)測、關(guān)鍵部位腐蝕速率開發(fā)智能安全預(yù)警分析軟件,缺陷智能識別準確率75%以上,提升新氣管道管線安全高效運行能力。建立基于數(shù)據(jù)驅(qū)動的油氣管道管容利用效率、能源消耗、檢修狀態(tài)等指標體系;建立管道容量分配、運行狀況的油氣儲備布局與實時信息共享的油氣運輸管道優(yōu)化調(diào)度的新型運籌學(xué)算法。3.航空發(fā)動機短艙問題的偏微分方程建模與計算研究內(nèi)容:通過發(fā)展湍流理論建立航空發(fā)動機燃燒室兩相湍流燃燒新模型及相應(yīng)模擬算法。通過建立復(fù)雜介質(zhì)中的多尺度模型來研究航空發(fā)動機復(fù)合材料結(jié)構(gòu)的多尺度損傷行為。通過有界區(qū)域偏微分方程建模研究發(fā)動機短艙的不同結(jié)構(gòu)對層流、湍流、多相流等的影響,并研究模型中逼近解的穩(wěn)定性,發(fā)展高性能計算方法提高逼近解的精度。發(fā)展離散度量空間理論以及最優(yōu)傳輸理論,提出新的高維數(shù)據(jù)降維方法。考核指標:自主開發(fā)虛擬計算平臺,計算航空發(fā)動機燃燒室兩相湍流燃燒新模型的數(shù)值解,新算法比現(xiàn)有算法效率提高一個量級,計算速度比國際一流計算平臺快一倍。提高航空發(fā)動機復(fù)合材料結(jié)構(gòu)中的多尺度模型中多尺度性的定量估計的準確性,數(shù)值近似解的逼近精度提高一個量級,與實驗數(shù)據(jù)誤差小于國際一流同類計算軟件誤差的50%。發(fā)展離散度量空間理論以及最優(yōu)傳輸理論提出新的高維數(shù)據(jù)降維方法及算法,比現(xiàn)有降維方法效率提高一倍。4.智能導(dǎo)航及遙感數(shù)據(jù)高精度融合的數(shù)學(xué)方法研究內(nèi)容:研究全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)實時高精度定位的超快收斂理論、高維快速運算方法及在實時精密單點定位(PPP)和載波相位差分技術(shù)(RTK)中的應(yīng)用;GNSS中心化多源導(dǎo)航融合的整數(shù)矢量快速尋優(yōu)模型及復(fù)雜環(huán)境下的智能可信導(dǎo)航應(yīng)用;異源異構(gòu)多維度遙感載荷大數(shù)據(jù)融合的幾何/輻射反演模型與優(yōu)化及在微納衛(wèi)星組網(wǎng)自主定標的應(yīng)用;高分辨成像優(yōu)化理論、三維信息重構(gòu)模型算法及復(fù)雜區(qū)域重點目標重構(gòu)應(yīng)用。考核指標:復(fù)雜環(huán)境下GNSS模糊度固定率由70%~80%提高至90%以上;剔除單傳感器失效的漏警率小于0.001,在GNSS可見衛(wèi)星個數(shù)不足時,隨距離增大,定位誤差累積不超過1%;開發(fā)1套異源異構(gòu)遙感載荷數(shù)據(jù)融合軟件,反演模型精度優(yōu)于5‰個像素,自主定標精度優(yōu)于1.5個像素;典型噪聲測量條件下,重構(gòu)圖像的峰值信噪比不低于28dB,典型目標重構(gòu)相對誤差小于5%。5.高端橡膠材料的可計算建模與智能化設(shè)計研究內(nèi)容:針對航空輪胎用高端橡膠材料,發(fā)展刻畫高分子鏈非線性響應(yīng)行為的數(shù)學(xué)理論,構(gòu)建橡膠材料的非線性黏彈性本構(gòu)方程,提出基于有限元方法的高效多尺度算法框架;實現(xiàn)橡膠材料力學(xué)性能、綜合熱傳輸與熱力耦合問題的多尺度精確高效模擬計算,提出復(fù)合材料鋪層結(jié)構(gòu)高效組合優(yōu)化設(shè)計方法,開發(fā)對航空輪胎綜合性能仿真結(jié)果即時輸出的具有自主知識產(chǎn)權(quán)的計算平臺。考核指標:基于本項目理論成果開發(fā)的計算平臺具備對多界面復(fù)合材料完備建模和自適應(yīng)快速網(wǎng)格劃分能力;具備為航空輪胎不同部位智能化調(diào)用相應(yīng)材料本構(gòu)方程、參數(shù)與算法的能力;可實現(xiàn)航空輪胎應(yīng)力-應(yīng)變響應(yīng)的快速數(shù)字化求解,靜態(tài)應(yīng)力-應(yīng)變的計算數(shù)值精度≥90%,動態(tài)應(yīng)力-應(yīng)變和溫升的計算數(shù)值精度≥85%,計算效率相對于常用商業(yè)軟件(如:ABAQUS,Ansys)提高8倍以上;形成1套對航空輪胎材料研制和輪胎制造具有指導(dǎo)能力的高精度設(shè)計軟件并在企業(yè)應(yīng)用。6.數(shù)理模型耦合驅(qū)動的自由曲面一體化數(shù)控加工理論與算法研究內(nèi)容:面向先進制造中幾何與物理信息、算法特性、加工大數(shù)據(jù)高度融合的需求,構(gòu)建數(shù)理模型驅(qū)動的自由曲面一體化數(shù)控加工基礎(chǔ)理論及算法體系。解決曲面設(shè)計模式和加工模式的數(shù)理融合問題、加工模式與物理特性的匹配問題;提出面向高速高精度加工的自由曲面設(shè)計與建模方法;建立幾何物理信息與加工大數(shù)據(jù)耦合意義下的多軸數(shù)控加工規(guī)劃框架;發(fā)展數(shù)理模型驅(qū)動的NURBS曲面直接插補方法。考核指標:提出面向加工度量的自由曲線曲面高速高精度建模方法,相比經(jīng)典NURBS方法,算法效率(迭代次數(shù))提升不低于10%;發(fā)展數(shù)學(xué)原理、物理信息與加工大數(shù)據(jù)耦合驅(qū)動的自由曲面高質(zhì)量加工路徑規(guī)劃理論與算法,相比傳統(tǒng)CAM方法,算法編程效率提升大于10%,新加工模式帶來的曲面物理功能效率(如減阻、增壓等)提升不低于10%;研究基于自由曲面求交的加工殘留與精度分析方法,并產(chǎn)出分析報告;建立數(shù)理模型驅(qū)動的NURBS曲面直接插補算法,支持微米級輪廓誤差精度編程;開發(fā)1套融合新原理的CAD-CAM-CNC一體化原型系統(tǒng),搭建樣機并在航空領(lǐng)域開展不少于5個場景的加工應(yīng)用驗證,其中功能性曲面加工樣件不少于2個。7.基于最優(yōu)化方法的大型城市復(fù)雜路網(wǎng)智能調(diào)度研究研究內(nèi)容:針對交通路網(wǎng)環(huán)境的復(fù)雜性與交通需求的不確定性,研究大型城市局域路網(wǎng)魯棒協(xié)同控制的數(shù)學(xué)理論與優(yōu)化方法;針對路網(wǎng)空間的復(fù)雜性,發(fā)展分布式與分層式路網(wǎng)控制數(shù)學(xué)理論與優(yōu)化方法;針對路網(wǎng)高密度道路管控與調(diào)度的復(fù)雜性,發(fā)展基于多目標優(yōu)化的交通路網(wǎng)智能調(diào)度數(shù)學(xué)理論與優(yōu)化方法;開發(fā)交通路網(wǎng)智能控制軟硬件協(xié)同平臺,開展大型城市復(fù)雜路網(wǎng)交通管理典型示范。考核指標:對于大型城市路網(wǎng)目標模式超過8種路網(wǎng)形態(tài),建立可實時運行的基于多目標優(yōu)化的路網(wǎng)調(diào)度數(shù)學(xué)理論與優(yōu)化方法;對于大型城市局域路網(wǎng),建立面向環(huán)境復(fù)雜性與交通需求不確定性的路網(wǎng)魯棒協(xié)同控制數(shù)學(xué)理論與優(yōu)化方法;對于超過500個路口的山地城市網(wǎng)絡(luò),建立路網(wǎng)分布式與分層式控制數(shù)學(xué)理論與優(yōu)化方法;建成超過36個山地城市路口的路網(wǎng)交通信號控制示范,其通過路口的平均延誤下降15%,路口通行效率提高20%。8.基于多模態(tài)數(shù)據(jù)的復(fù)雜網(wǎng)絡(luò)拓撲分析與演化預(yù)測研究研究內(nèi)容:面向社會安全風(fēng)險的預(yù)測、防范和處置需求,研究關(guān)鍵數(shù)據(jù)的精準快速采集技術(shù)以及海量多模態(tài)數(shù)據(jù)處理技術(shù)。研究多模態(tài)時序關(guān)系復(fù)雜網(wǎng)絡(luò)的圖嵌入表示方法、網(wǎng)絡(luò)圖譜的相似度學(xué)習(xí)和拓撲分析,異構(gòu)特征屬性之間內(nèi)嵌的本征結(jié)構(gòu);復(fù)雜信息網(wǎng)絡(luò)顯性子圖的搜索空間優(yōu)化方法、建模與演化預(yù)測方法,重要節(jié)點挖掘和鏈路預(yù)測方法。考核指標:構(gòu)建面向社會安全風(fēng)險感知的千萬級結(jié)點、億級邊、包含多模態(tài)數(shù)據(jù)的復(fù)雜網(wǎng)絡(luò),支持不少于5類典型場景的分鐘級搜索響應(yīng)和挖掘計算能力;搭建基于復(fù)雜網(wǎng)絡(luò)的社會安全風(fēng)險建模預(yù)測演示驗證平臺,在2個以上的大中型城市開展應(yīng)用驗證,實現(xiàn)對虛實空間中社情民意風(fēng)險感知準確率大于85%,其中3D識別算法正確率不低于97%。9.胰膽惡性腫瘤精準診療的數(shù)學(xué)理論和算法研究內(nèi)容:針對復(fù)雜環(huán)境下浸潤性強目標小且模糊的胰膽惡性腫瘤,建立智能感知、增強和識別算法;研究影像中模糊目標特征提取、定量刻畫和模糊程度定量分類,構(gòu)建基于幾何和PDE理論的模糊和部分缺失的胰膽惡性腫瘤、血管3D醫(yī)學(xué)影像的精準分割模型和算法;發(fā)展小樣本、弱監(jiān)督、模態(tài)遷移和知識嵌入的強化學(xué)習(xí)方法,建立多模態(tài)多時間序列圖像、目標缺損圖像和多組學(xué)圖像3D/4D非剛性配準、融合及重建模型和高效非凸算法;探索基于影像的胰膽惡性腫瘤演化機理,構(gòu)建腫瘤演化進程模型。考核指標:研發(fā)針對弱小目標的新一代高對比度的醫(yī)學(xué)成像技術(shù)和設(shè)備。建立胰膽惡性腫瘤、血管分割和非剛性配準算法,使得分割和配準精度達到95%或以上,比現(xiàn)有方法提高或超過15%,提出達到臨床要求的膽胰腫瘤精準診斷的新方法。構(gòu)建多模態(tài)、多組學(xué)圖像融合和重建算法,模擬胰膽惡性腫瘤演化進程,用于胰膽精準診療臨床實踐。獲得胰膽惡性腫瘤精準診療中分割、配準和識別核心技術(shù)的授權(quán)自主知識產(chǎn)權(quán),服務(wù)于胰膽惡性腫瘤的精準診療。10.大數(shù)據(jù)計算與分析的基礎(chǔ)算法研究內(nèi)容:針對我國大數(shù)據(jù)技術(shù)發(fā)展的重大需求,聚焦大數(shù)據(jù)計算“7個巨人問題”中的“廣義多體,統(tǒng)計計算,線性代數(shù)計算”問題,研發(fā)在典型大數(shù)據(jù)環(huán)境下可運行、高效能求解的基礎(chǔ)算法與對應(yīng)的大數(shù)據(jù)聚類分析、判別分析與降維分析核心算法;建立對應(yīng)算法的計算復(fù)雜性、收斂性、誤差可控性等可用性與正確性數(shù)學(xué)理論;在1-2個典型行業(yè)大數(shù)據(jù)中取得突破應(yīng)用。考核指標:對廣義多體,統(tǒng)計計算,線性代數(shù)計算等3個基本計算問題各研發(fā)一個對百億級大數(shù)據(jù)可用、理論證明正確的基礎(chǔ)算法,其計算效率比當(dāng)前最好算法提升40%以上;針對3個典型大數(shù)據(jù)分析任務(wù)構(gòu)建大數(shù)據(jù)分析算法,有效分析數(shù)據(jù)規(guī)模達到TB級,支持3種以上大數(shù)據(jù)環(huán)境有效執(zhí)行;支撐TB級醫(yī)療影像數(shù)據(jù)處理(重建或分割),單個體三維影像處理時間低于0.05秒,誤差率比當(dāng)前最優(yōu)水平降低8%以上。11.太赫茲醫(yī)學(xué)影像及診斷系統(tǒng)中的關(guān)鍵數(shù)學(xué)問題及應(yīng)用研究內(nèi)容:探索牙齒、乳腺太赫茲影像檢測的系統(tǒng)集成;開發(fā)牙齒多層結(jié)構(gòu)折射率不同的成像算法、牙齒表面不平整散射嚴重的成像算法;建立反常統(tǒng)計力學(xué)框架下的癌細胞超擴散演化方程;發(fā)展只依賴于曲面黎曼度量共形幾何內(nèi)蘊方法,融合擬共形變換參數(shù)與分數(shù)階布朗運動Hurst指數(shù)兩者所包含的信息;為診斷乳腺癌及跟蹤癌病變發(fā)展進程提供算法支持。考核指標:完成牙齒、乳腺太赫茲影像檢測儀樣機;提交牙齒多層結(jié)構(gòu)折射率不同的太赫茲成像算法、牙齒表面不平整散射嚴重的成像算法;給出擬共形變換參數(shù)與分數(shù)階布朗運動Hurst指數(shù)之間的關(guān)聯(lián)形式,計算擬共形變換不變量,提供齲齒及乳腺癌的AI識別診斷算法,誤識率小于5%,漏識率小于3%。12.面向海量多源遙感數(shù)據(jù)處理的關(guān)鍵數(shù)學(xué)問題及其產(chǎn)業(yè)應(yīng)用研究內(nèi)容:針對海量多源遙感數(shù)據(jù)中含有的多類型噪音,構(gòu)建多模態(tài)核函數(shù),改進先驗信息提取方法,優(yōu)化圖像超分重構(gòu)算法。在遙感數(shù)據(jù)處理和反演中涉及病態(tài)方程,合理設(shè)計反演過程的信息變遷,將遙感數(shù)據(jù)特性和預(yù)處理算法相結(jié)合,實現(xiàn)高維病態(tài)方程的優(yōu)化求解?!巴锂愖V”及“同譜異物”現(xiàn)象導(dǎo)致多光譜數(shù)據(jù)地物光譜特征呈非線性,基于隨機統(tǒng)計分析方法,對多光譜遙感圖像進行預(yù)處理,建立樣本圖-譜特征聯(lián)合模型,進行多光譜數(shù)據(jù)特征深層次表達,提升遙感影像監(jiān)督分類精度。考核指標:針對星載遙感成像系統(tǒng)受到平臺振動、系統(tǒng)噪聲、氣候天氣等因素的影響,以及超過成像系統(tǒng)截止頻率的高頻細節(jié)信息丟失問題,實現(xiàn)超分辨率重構(gòu)復(fù)原,影像分辨率提升1.5倍。經(jīng)過遙感反演病態(tài)方程優(yōu)化后地表反射率反演精度高于85%。通過多光譜遙感影像數(shù)據(jù)圖-譜特征模型建立,大區(qū)域分類準確率提高7%。13.基于機器學(xué)習(xí)與確定性機理融合的高精度地圖制作和評估體系研究內(nèi)容:建立機器學(xué)習(xí)與確定性機理混合建??蚣荏w系;構(gòu)建可解釋和可信任的確定性及隨機算法;研究從交通路網(wǎng)到車道線級別道路的數(shù)學(xué)表達;發(fā)展將眾包數(shù)據(jù)和傳統(tǒng)測繪數(shù)據(jù)進行互補和融合的高精度地圖制作方法;研究自然語言處理技術(shù)在高精度地圖路標牌語義識別中的應(yīng)用;建立從地圖的采集、制作和融合全流程的質(zhì)量評估體系。考核指標:建立基于機器學(xué)習(xí)與確定性機理融合的高精度地圖制作和評估體系的理論;實現(xiàn)包含眾包數(shù)據(jù)或測繪數(shù)據(jù)場景全覆蓋和要素全覆蓋的高精度地圖制作,生產(chǎn)自動化水平達到95%以上;在高速、主干道及數(shù)據(jù)源相對豐富的城區(qū)中地圖精度不低于5-10厘米;保證高精度地圖生產(chǎn)全流程的置信值不低于95%。14.面向國產(chǎn)高性能自主可控計算機的基礎(chǔ)數(shù)學(xué)庫軟件與應(yīng)用研究內(nèi)容:基于高性能自主可控計算平臺的基礎(chǔ)數(shù)學(xué)算法、面向復(fù)雜應(yīng)用問題的數(shù)學(xué)模型和高效并行求解器;基于自主處理器和異構(gòu)并行計算機體系的數(shù)學(xué)庫軟件和評測工具,為各類計算問題提供編程接口和框架;支撐復(fù)雜工業(yè)仿真和高端芯片研發(fā)的新型數(shù)學(xué)模型和高效數(shù)值并行算法,以及基于自主處理器和基礎(chǔ)并行數(shù)學(xué)庫的仿真、設(shè)計軟件的開發(fā)與應(yīng)用。考核指標:面向多種應(yīng)用場景,適配3種以上國產(chǎn)自主處理器及百萬核異構(gòu)計算架構(gòu),性能不低于國外主流同類基礎(chǔ)數(shù)學(xué)庫軟件;可支撐千萬級模型自由度計算、萬核并行效率不低于30%的自主工業(yè)仿真軟件系統(tǒng)1套,計算性能不低于國際主流同類軟件系統(tǒng);高端芯片的設(shè)計軟件具備第一性原理預(yù)測能力,軟件算法時間復(fù)雜度O(nc)由同類主流軟件的c>1降為c≤1。15.全壽命瀝青路面時空演化數(shù)學(xué)模型構(gòu)建與結(jié)構(gòu)優(yōu)化智能算法設(shè)計研究內(nèi)容:針對當(dāng)前瀝青路面技術(shù)中實踐數(shù)據(jù)挖掘不充分、數(shù)學(xué)理論支撐不完善、相關(guān)設(shè)計模型可靠性低、設(shè)計壽命預(yù)估誤差大等基礎(chǔ)問題,研發(fā)全壽命周期條件下的瀝青路面結(jié)構(gòu)與材料的時空演化數(shù)學(xué)模型,形成多層次、多框架下解析推斷系統(tǒng),開發(fā)結(jié)構(gòu)優(yōu)化智能算法,挖掘多因素同步耦合狀態(tài)下的服役性能衰變機理,構(gòu)建適應(yīng)于長壽命使用需求的疲勞設(shè)計模型,實現(xiàn)給定指標需求下路面結(jié)構(gòu)最優(yōu)設(shè)計方案,完善瀝青路面安全、耐久的結(jié)構(gòu)設(shè)計體系,為構(gòu)建長壽命路面設(shè)計體系奠定基礎(chǔ)。考核指標:建立瀝青路面全周期服役性能指標的時空演化規(guī)律數(shù)學(xué)模型,與實測數(shù)據(jù)的預(yù)測精確度不低于85%;給出路面結(jié)構(gòu)安全服役性能衰變的疲勞方程估計式,準確率不低于85%;開發(fā)路面結(jié)構(gòu)設(shè)計推斷系統(tǒng),生成的優(yōu)化設(shè)計方案使得路面預(yù)估壽命不小于30年;設(shè)計結(jié)構(gòu)優(yōu)化智能算法,開發(fā)軟件著作權(quán)1套。